
Reading the Heart’s Code
A Review of Artificial Intelligence in Electrocardiography

The Global Heartbeat Challenge

Cardiovascular disease remains the leading cause of mortality worldwide.

17.9M
Deaths Annually

This staggering number highlights the critical need for rapid, precise, and accessible diagnostic tools like the ECG.

AI's Diagnostic Power: A Leap in Precision

A systematic review of 20 key studies reveals that AI-enhanced ECG systems achieve remarkable

performance, significantly outperforming traditional interpretation methods in speed and accuracy.

Key diagnostic performance metrics from reviewed AI models.

Real-World Impact

>40%
Reduction

in diagnostic latency for arrhythmia

detection using AI-embedded wearable

devices in clinical settings.

The Engine Room: AI Model Types

Deep learning models are the dominant

force, driving the high accuracy seen across

studies.

Over 70% of algorithms applied were deep

learning models.

Ensemble Strength

Methods like XGBoost are highly effective

for classification tasks, achieving

impressive results.

>0.92
F1-Score

for classifying cardiac conditions.

Critical Hurdles on the Horizon

Despite their power, AI models face significant challenges related to bias and transparency that must

be addressed for safe and equitable clinical deployment.

Dataset Diversity Gap

A lack of diversity in training data risks creating models that are less

accurate for underrepresented patient populations, limiting

generalizability.

The "Black Box" Problem

Without model explainability (using tools like SHAP or LIME), clinicians

may struggle to trust and verify AI-driven diagnostic recommendations.

The Path to Trustworthy AI in Cardiology

To fully realize the potential of AI in ECG analysis, future efforts must focus on building a foundation

of inclusivity, transparency, and ethical oversight.

1

Inclusive Datasets

Prioritize demographic and clinical

representativeness in training data.

→
2

Interpretable Models

Develop and validate models that are

transparent and clinically verifiable.

→
3

Rigorous Ethics

Establish strong ethical frameworks to

guide development and deployment.

Infographic based on the systematic review: "Reading the Heart’s Code: A Systematic Review of Artificial Intelligence in Electrocardiography, from Diagnostic Models to Ethical

Challenges."
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• AI-ECG models achieved 87–98% 
diagnostic accuracy; sensitivity 
up to 95% and AUC frequently 
>0.90. 

•   Deep learning (CNN/RNN) 
comprised >70% of algorithms 
across the 20 included studies. 

•   Real-time wearables with 
embedded AI reduced time-to-
diagnosis by >40% for arrhythmia 
detection. 

•   Dataset bias persists: ~60% of 
studies used non-diverse cohorts, 
limiting generalizability. 

•   Explainability remains limited: 
only ~25% used SHAP/LIME; 
clinician trust is a key barrier. 
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Reading the Heart’s Code: A Systematic Review of Artificial 

Intelligence in Electrocardiography, from Diagnostic Models to 
Ethical Challenges 

RESEARCH  

 Abstract 

Background: Artificial intelligence (AI) is transforming electrocardiogram (ECG) interpretation through high-speed, 

high-accuracy automation, particularly in diagnosing arrhythmias and myocardial infarction. With cardiovascular disease 

remaining the leading cause of mortality worldwide (responsible for ~17.9 million deaths annually), rapid and precise 

ECG analysis is critical. 

Objective: This systematic review evaluates current applications of AI in ECG analysis, focusing on model types, 

diagnostic performance, dataset quality, clinical integration, and ethical considerations. 

Methods: Following PRISMA 2020 guidelines, a systematic search of PubMed, Scopus, Web of Science, and IEEE Xplore 

was conducted. A total of 679 records were identified; after screening and eligibility assessment, 20 studies were 

included. These encompassed 3 experimental studies, 3 simulation-based studies, 3 systematic reviews, and 11 narrative 

reviews. Deep learning models – especially convolutional and recurrent neural networks – accounted for over 70% of the 

algorithms applied across studies. 

Results: AI-enhanced ECG systems achieved impressive diagnostic accuracies between 87% and 98%, with sensitivity 

rates up to 95% and area-under-curve (AUC) values frequently above 0.90. Ensemble machine learning methods (e.g., 

XGBoost) yielded F1-scores >0.92 for classifying cardiac conditions. Real-time AI-embedded wearable devices 

demonstrated a >40% reduction in diagnostic latency for arrhythmia detection in clinical settings. However, 60% of 

studies utilized non-diverse training datasets, limiting model generalizability, and only about 25% of the studies 

addressed model explainability through tools like SHAP or LIME. 

Conclusion: AI markedly advances ECG-based diagnostics, improving accuracy and efficiency. Yet, challenges remain 

regarding model transparency, ethical deployment, and demographic representativeness of training data. Future efforts 

must emphasize more inclusive datasets, interpretable and clinically validated models, and rigorous ethical frameworks 

to support safe integration of AI-ECG systems in diverse real-world healthcare settings. 

Keywords : Artificial intelligence, Electrocardiogram, Deep learning, Arrhythmia detection, Diagnostic accuracy 
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Introduction 

The incorporation of artificial 

intelligence into ECG analysis is 

revolutionizing cardiovascular 

diagnostics, offering enhanced 

pattern recognition and expedited 

interpretation of complex cardiac 

signals[1][2]. By leveraging large 

datasets and advanced 

computational models, AI systems 

can detect subtle ECG abnormalities 

that may escape human eyes, 

thereby enabling earlier 

identification of cardiac problems 

and more informed clinical 

decision-making[3][4]. This 

capability is especially valuable in 

time-sensitive or resource-limited 

situations, such as emergency care 

or rural health settings, where rapid 

and consistent ECG interpretation 

can be life-saving[5]. The growing 

prevalence of cardiovascular 

disease worldwide further 

underscores the need for AI-driven 

tools to improve diagnostic speed 

and accuracy in combating this 

leading cause of mortality. 

A wide array of AI models has been 

applied to ECG interpretation. 

Traditional machine learning 

algorithms (e.g., support vector 

machines, k-nearest neighbors) 

have shown utility in ECG signal 

classification but often require 

manual feature extraction, limiting 

their ability to capture the full 

complexity of ECG waveforms[6]. In 

contrast, deep learning models – 

particularly convolutional neural 

networks (CNNs) and recurrent 

neural networks (RNNs) – 

automatically learn hierarchical 

features from raw ECG data and 

have demonstrated superior 

performance, with many achieving 

over 90% accuracy in detecting 

arrhythmias and ischemia[7][8]. 

These deep learning approaches 

have even outperformed expert 

clinicians in certain diagnostic 

tasks, highlighting AI’s potential to 

augment clinical expertise. 

Importantly, some AI-ECG systems 

are now being embedded in 

wearable and portable devices for 

real-time monitoring, facilitating 

remote arrhythmia detection and 

risk prediction outside the hospital 

setting[9][10]. For example, AI 

algorithms integrated into 

smartwatches and patch monitors 

can continuously screen for atrial 

fibrillation and alert patients and 

providers to abnormal rhythms, a 

capability that can significantly 

broaden access to cardiac care[5]. 

Despite these advances, there are 

notable challenges and limitations 

to address before AI-ECG can be 

fully embraced in routine practice. 

Many AI models are trained on data 

that are not fully representative of 

diverse patient populations, raising 

concerns about bias and reduced 

generalizability to 

underrepresented groups[10][5]. 

Ensuring the privacy and security of 
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sensitive patient data used for 

model training is another concern, 

as highlighted by emerging 

frameworks on health data 

ethics[11]. Additionally, most state-

of-the-art AI models operate as 

“black boxes,” offering accurate 

predictions without transparent 

reasoning. This lack of 

interpretability can undermine 

clinician trust in AI-driven 

recommendations[12]. Recognizing 

this, researchers are increasingly 

focusing on explainable AI, using 

techniques like Shapley values and 

saliency mapping to make AI 

decision-making more 

transparent[12]. Finally, the legal 

and regulatory environment for 

medical AI is still evolving. 

Questions of accountability—such 

as who is liable if an AI 

interpretation error leads to patient 

harm—remain unresolved[13]. 

Regulatory bodies have begun to 

formulate guidelines, but clear 

policies ensuring the safe, equitable, 

and effective deployment of AI in 

healthcare are needed to foster 

public trust. 

In summary, while AI has 

demonstrated remarkable success 

in augmenting ECG interpretation 

and holds promise for improving 

cardiac care, careful attention to 

validation, ethics, and equity is 

required. This systematic review 

aims to provide a comprehensive 

synthesis of current evidence on AI 

in ECG diagnostics—examining the 

spectrum of AI models in use, their 

performance and clinical 

applications, as well as the 

challenges and ethical 

considerations that must be 

navigated to harness AI’s full 

potential in electrocardiography. 

  

 

Methods 
This review was conducted 

according to the PRISMA 2020 

guidelines for systematic reviews. A 

comprehensive literature search 

was performed in four electronic 

databases: PubMed, Scopus, Web of 

Science, and IEEE Xplore, covering 

all publications up to August 2024. 

The search strategy combined 

keywords and MeSH terms related 

to “artificial intelligence,” “machine 

learning,” “deep learning,” and 

“electrocardiography” (e.g., “AI 

ECG,” “neural network ECG 

interpretation,” “machine learning 

cardiology”). No language 

restrictions were applied at the 

search stage, but only English-

language articles were ultimately 

included. 

All retrieved records were imported 

into a reference manager, and 

duplicates were removed. Two 

reviewers independently screened 

the titles and abstracts against 

predefined inclusion criteria: 

studies had to focus on the 

application of AI or machine 

learning techniques to ECG analysis 
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for diagnostic or predictive 

purposes. We included original 

research articles (experimental 

studies, observational studies) as 

well as relevant review articles 

(narrative reviews, systematic 

reviews) given the breadth of our 

objectives. Non-primary literature 

(conference abstracts without full 

text, editorials, and commentaries) 

and studies not directly related to 

ECG-based diagnosis (e.g., AI 

applied only to other cardiac tests or 

imaging) were excluded. 

After the initial screening, eligible 

full-text articles were obtained and 

assessed for final inclusion. In total, 

20 studies met all criteria and were 

included in the qualitative 

synthesis. A PRISMA flow diagram 

was used to document the study 

selection process. Specifically, 679 

records were initially identified 

through database searching. After 

removal of 112 duplicates, 567 

unique records underwent 

title/abstract screening. Of these, 

491 records were excluded for 

irrelevance or ineligible study 

design, leaving 76 articles for full-

text review. Upon further 

evaluation, 56 articles were 

excluded (reasons included lack of 

primary data, not addressing ECG-

based AI, or outcome irrelevance to 

our review questions). The 

remaining 20 studies were included 

in the final analysis. 

For each included study, we 

extracted key data regarding study 

design, population, sample size, AI 

techniques used, and main findings 

related to diagnostic performance 

and clinical application. Given the 

heterogeneity of study designs and 

outcomes, a meta-analysis was not 

feasible. Instead, we carried out a 

narrative synthesis organized 

around the review objectives (AI 

model types, diagnostic outcomes, 

dataset characteristics, clinical 

applications, and ethical 

challenges). We also appraised the 

methodological quality of the 

studies: for empirical studies, the 

Joanna Briggs Institute (JBI) critical 

appraisal checklists were used 

(tailored to each study design), and 

for review articles, we assessed 

clarity of objectives, search 

methodology, and bias discussion. 

Quality scores or ratings are 

summarized in Table 1 (e.g., JBI 

scores out of 6 or 11, as applicable). 

These assessments helped 

contextualize the strength of 

evidence when interpreting results. 

No funding was received for this 

study, and the review protocol was 

not registered (as this was an 

academic exercise). Any 

disagreements in study selection or 

data extraction between reviewers 

were resolved through discussion 

and consent .  

 

Literature Review 
AI Models Utilized in ECG 

Interpretation: The literature 

reveals that a variety of AI models 
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have been applied to ECG data, 

ranging from classic machine 

learning algorithms to state-of-the-

art deep learning. Several review 

papers categorized the approaches 

used in this field[18]. Traditional 

machine learning (ML) techniques 

(such as decision trees, support 

vector machines, and k-nearest 

neighbors) were employed in some 

earlier studies, often requiring 

predefined ECG features (e.g., QRS 

duration, RR interval) as inputs. In 

contrast, deep learning (DL) 

approaches – especially CNNs and 

LSTMs – have become more 

prevalent due to their ability to 

automatically extract complex 

morphological and temporal 

features from raw ECG signals. An 

included systematic review by 

Ayano et al. noted that deep learning 

models generally outperform 

classical ML in ECG tasks, albeit with 

the drawback of reduced 

interpretability[18]. Indeed, many 

recent studies have focused on 

interpretable or explainable AI: for 

example, one experimental study 

(Anand et al., 2022) developed a 

deep CNN model for arrhythmia 

detection and used SHAP values to 

explain the model’s predictions, 

thereby enhancing transparency of 

the AI decision process[19]. This 

trend indicates growing awareness 

that model performance alone is not 

sufficient – clinicians also need 

insight into how the model is 

reading the ECG. 

Diagnostic Performance of AI-ECG 

Systems: Across the included 

studies, AI-enhanced ECG 

interpretation demonstrated 

consistently high diagnostic 

accuracy for a range of cardiac 

conditions. Many experimental 

evaluations reported accuracy and 

AUC values well above 90% for 

detecting arrhythmias or ischemic 

changes. For instance, Majhi et al. 

(2024) reported an ensemble 

learning approach (combining 

random forest and XGBoost 

classifiers on processed ECG 

features) that achieved an F1-score 

above 0.92 in classifying heart 

disease from ECG signals[20][21]. 

Such high performance metrics 

were common in controlled 

evaluations. Likewise, in a narrative 

review by Siontis et al. (2021), the 

authors highlighted that deep 

neural networks can identify atrial 

fibrillation and other arrhythmias 

with sensitivity and specificity often 

exceeding those of expert human 

interpreters[22]. The ability of AI 

models to catch subtle patterns (for 

example, premature atrial 

contractions or minute ST-segment 

deviations) underpins these 

superior outcomes. However, it 

should be noted that most results 

stem from retrospective analyses or 

validation on static datasets; real-

world prospective studies are still 

limited in number. Nonetheless, the 

evidence to date suggests that AI 

can serve as a powerful diagnostic 
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amplifier in ECG interpretation, 

augmenting the detection of 

arrhythmias, myocardial 

infarctions, and even structural 

heart disease markers that manifest 

in ECG signals. 

Clinical Applications and Workflow 

Integration: Beyond raw 

performance metrics, the literature 

documents a range of potential 

applications for AI in clinical ECG 

workflows. Several studies explored 

AI for early detection and screening. 

For example, an experimental study 

by Chowdhury et al. (2018) 

demonstrated a portable AI-

assisted ECG system that could 

reliably detect cardiac 

abnormalities in a low-resource 

setting, indicating the promise of AI 

to extend advanced diagnostics to 

clinics lacking cardiology 

specialists[23][21]. Other included 

studies evaluated AI algorithms in 

wearable devices – such as 

smartwatches or patch monitors – 

enabling real-time arrhythmia 

monitoring and alerting outside the 

hospital. These AI-driven wearables 

showed potential to drastically 

reduce the time to diagnosis for 

conditions like paroxysmal atrial 

fibrillation by continuously 

surveying patients’ rhythm and 

transmitting alerts. Clinical 

application was not limited to 

arrhythmias; some works discussed 

AI aiding in detection of structural 

heart diseases (e.g., left ventricular 

hypertrophy or heart failure) by 

analyzing ECG patterns that 

correlate with those conditions, 

which could allow earlier 

intervention. Moreover, a few cross-

sectional studies in our review 

examined how AI-ECG tools 

perform in practice: for instance, AI 

algorithms integrated into 

emergency department triage 

systems were able to flag high-risk 

ECGs (such as ST-elevation MI) 

faster than standard protocol, 

thereby speeding up care delivery. 

While full integration of AI into 

routine workflow is still in progress, 

these examples illustrate tangible 

clinical benefits. Notably, about half 

of the included studies also 

commented on workflow efficiency 

– AI can automate the initial ECG 

analysis, reducing the burden on 

clinicians and potentially 

standardizing interpretation quality 

across providers. 

Data Sources and Training 

Considerations: The sources of ECG 

data used to develop and evaluate AI 

models were a recurring theme in 

the literature. Many studies relied 

on well-known public ECG 

databases (for example, MIT-BIH 

arrhythmia database, PTB-XL, and 

PhysioNet’s various ECG 

collections) for model training and 

benchmarking. These databases 

provide large quantities of 

annotated ECG signals and have 

spurred much of the progress in the 

field. However, they come with 

limitations: as several authors 
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pointed out, such datasets often lack 

demographic diversity (e.g., over-

representation of certain age or 

ethnic groups) and may not include 

the full spectrum of real-world noise 

or artifact encountered in clinical 

practice[24][25]. An included 

systematic review by Rahma et al. 

(2023) specifically focused on data 

augmentation techniques to 

improve AI model robustness, 

reflecting the concern that limited 

or homogeneous data can lead to 

biased algorithms[26]. Some studies 

in our review augmented ECG 

training sets by adding synthetic 

noise, jitter, or using generative 

models to create additional 

abnormal ECG examples – all in an 

effort to improve generalizability. A 

few studies did utilize proprietary 

clinical ECG datasets from hospitals 

(sometimes comprising tens of 

thousands of ECGs). These provided 

more diverse inputs (with 

variations in patient demographics 

and comorbidities), but they 

introduced challenges like label 

noise (due to less standardized 

annotations) and raised privacy 

concerns. In summary, the literature 

suggests that while large public 

datasets have driven AI-ECG 

innovation, future work must 

expand data sources to ensure 

algorithms perform well across 

different populations and 

acquisition conditions. Efforts such 

as data sharing collaborations and 

federated learning (training AI 

models across multiple institutions 

without pooling data centrally) 

were mentioned as potential 

solutions to gather bigger and more 

diverse ECG datasets for AI training. 

Identified Gaps and Limitations: 

Despite the generally positive 

findings, the literature also 

consistently identified certain gaps 

that need to be addressed. One 

prominent issue is the lack of 

external validation of AI-ECG 

models. Many high-accuracy results 

were achieved on test sets drawn 

from the same distribution as 

training data, but independent 

validation on external patient 

cohorts was less common – raising 

concerns about overfitting. 

Moreover, only a minority of studies 

tackled the question of AI 

explainability in depth. We 

observed that roughly 5 out of the 

20 included studies (about 25%) 

explicitly incorporated 

interpretability tools or analyses of 

algorithm decision-making. This 

indicates that the field is still 

evolving in terms of making AI 

outputs transparent for clinical end-

users. Another limitation frequently 

noted is the bias in training data. If 

certain groups (such as women, the 

elderly, or patients from low-

income regions) are 

underrepresented in the 

development data, the AI’s 

performance may be poorer in those 

groups, potentially exacerbating 

healthcare disparities. Few studies 
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in our sample provided a thorough 

breakdown of performance across 

subpopulations, leaving this an 

open area for further research. 

Finally, practical deployment issues 

– such as integration with electronic 

health records, real-time processing 

constraints, and obtaining 

regulatory approval – were 

mentioned in passing in some 

narrative reviews but have yet to be 

systematically studied. These 

considerations underscore that 

while the technical feasibility of AI 

in ECG interpretation is well 

demonstrated, translational hurdles 

remain before such tools can be 

broadly adopted in everyday clinical 

practice. 

 

 

Results 
This section presents the findings of 

the systematic review, organized 

according to the pre-specified 

objectives, covering AI model types, 

datasets used, diagnostic outcomes, 

clinical applications, and identified 

gaps, limitations, and ethical 

considerations. 

Overview of Included Studies and 

Study Selection Process 

The systematic search and 

screening process, conducted in 

accordance with PRISMA 2020 

guidelines, resulted in the inclusion 

of 20 studies that met the 

predefined eligibility criteria. An 

initial 679 records were identified 

through database searching. After 

removing 112 duplicate records, 

567 unique records proceeded to 

title and abstract screening, with 

491 records excluded due to 

irrelevance or inappropriate study 

design. The remaining 76 full-text 

articles were retrieved and assessed 

for eligibility, leading to the 

exclusion of 56 articles for various 

reasons, such as not being primary 

research or lacking direct relevance 

to the review's objectives. 

Ultimately, 20 studies were 

included in the qualitative synthesis 

see figure 1 . A quantitative 

synthesis (meta-analysis) was not 

performed due to significant 

heterogeneity in reported outcomes 

and methodologies across the 

included studies. 

 
 

Figure 1. PRISMA Flow Diagram 
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The 20 included studies represented a diverse range of research designs: 

• Narrative reviews: 10 studies 

• Systematic reviews: 3 studies 

• Experimental studies: 3 studies 

• Simulation-based studies: 2 studies 

• Cross-sectional studies: 2 studies 

 

Figure 2. Distribution of Study Designs
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Table 1: Characteristics of Included Studies 

No. Study ID Study 

Design 

Country Countr

y  

Study 

Period 

Population Sample Size Method/Measurement Tool JBI Score 

1. Siontis. et al, 

2021 

Narrative 

review 

USA High 2021 Cardiovascular disease in at-risk populations of all 

ages. 

Analysis and synthesis of 

existing literature on AI 

applications in ECG 

interpretation 

N/A 

2. Anand, et al, 

2022 

Experimental 

study 

India Lower 

middle 

2022 ECG recordings from publicly available datasets, 

specifically PTB-XL and an arrhythmia dataset. 

Over 21,000 7 

3. Attia, et al, 2021 Narrative 

Review 

USA/ UK High 2021 N/A N/A 8 

4. Mamun et al, 

2023 

Narrative 

Review 

USA High 2023 N/A N/A 7 

5. Rahma, et al, 

2023 

Systematic 

Review 

Italy/ USA High 2023 N/A 119 N/A 

6. Majhi et.al 2024 Simulation 

Study 

N/A N/A 2024 ECG recordings from 3 international databases 101,799  

7. Chowdhury  

et.al 2018 

Experimental 

study 

Bangladesh Lower-

middle 

2018 Mixed CVD/normal cases. 80 N/A 

8. Adasuriya Et.al , 

2023 

Narrative 

review 

N/A N/A 2023-

2019 

Patients with various cardiovascular diseases in 

multiple studies including randomized controlled 

trials 

N/A 7 

9. Rafie,et.al 2021 Narrative 

review 

USA HIGH 2021 Patients with cardiac symptoms N/A 9 

10. Kolhar ,et.al 

2024 

Experimental 

study 

KSA/ INDIA High / 

middle

-lower 

2024 Mixed normal/abnormal ECG cases from public 

databases 

338  

11. Martinez Et.al 

2024 

narrative 

review 

N/A N/A 2024 Patient with various cardiovascular disease N/A 8 

12. Nechita Et.al 

2024 

Narrative 

Review 

Romania Upper-

middle 

2024 N/A N/A  
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13. Sonia J Et.al 

2022 

experimental 

study 

India Lower-

middle 

2022 Patients with various cardiac conditions. N/A 7 

14. Kashou Et.al 

2023 

methodologi

cal review 

India Lower-

middle 

2023 N/A N/A  

15. May Et.al 2024 methodologi

cal 

N/A N/A N/A Patients with various cardiac conditions. N/A N/A 

16. Lichaee. 

Et.al2024 

Review 

Article 

Iran Upper

middle 

N/A N/A N/A  

17. Monfredi Et.al 

2023 

crosssectiona

l study 

Saudi 

Arabia 

High May and 

June 

2023 

Nursing students 175 N/A 

18. Ose Et.al 2024 narrative 

review 

USA High May 16, 

2024 

N/A N/A  

19. Al-Zaiti Et.al 

2023 

A cross-

sectional 

study 

Kuwait High 2022 Young adults aged 18 to 35 years residing in 

Kuwait. 

529 7 

20. Sellés Et.al 

2023 

narrative 

review 

Spain High N/A N/A N/A  

  Types of AI Models Used in ECG Interpretation 

The review highlighted a wide range of AI approaches used in ECG interpretation, categorized into deep learning, machine 

learning, hybrid/explainable AI, and IoT/IoMT integration. 
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Figure 3. Applications vs Outcomes of AI-ECG Models 

 

Key Insights: 

• CNNs are the most dominant model used across studies for ECG signal 

interpretation. 

• There is a clear trend toward explainable AI using tools like SHAP to 

increase clinical trust. 

• Studies increasingly combine AI with portable and IoT/IoMT devices, 

indicating the future of ECG analysis lies in real-time and remote 

monitoring. 

• Hybrid approaches that blend optimization algorithms, signal 

processing, and traditional ML show promise for performance 

enhancement. 
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Table 2: AI Models Used in ECG Interpretation 

MODEL TYPE SPECIFIC EXAMPLES 

/ VARIANTS 

STUDY 

NUMBERS 

KEY FEATURES / 

APPLICATIONS 

DEEP LEARNING CNN: ST-CNN-GAP-5, 

i-AlexNet, generic 

deep CNNs, DQMCNN 

2, 7, 10, 13 High accuracy for ECG signal 

interpretation; dominant model 

in most studies  
RNN (Recurrent 

Neural Network) 

4 Effective for sequential/time-

series data like ECG  
Other Deep Learning 

(unspecified 

architectures) 

1, 3, 5, 8, 11, 

12, 16, 18, 

20 

Reviewed across multiple 

articles, showing broad interest 

MACHINE 

LEARNING 

Random Forest, 

XGBoost (ensemble 

methods) 

6 Used for heart disease 

classification in simulation 

study  
SVM, K-Nearest 

Neighbors (KNN) 

4, 8, 14 Classical classifiers reviewed 

but less commonly used in new 

implementations 

HYBRID / 

EXPLAINABLE AI 

SHAP (Explainability 

Tool) 

2, 6 Used to interpret predictions of 

complex models  
Red Fox Optimization 

(Model Tuning) 

10 Enhanced CNN performance via 

optimization  
DWT / EWT (Signal 

Preprocessing) 

6 Integrated with ML for 

improved ECG signal clarity 

IOT / IOMT 

INTEGRATION 

Portable devices, 

wireless biosensors, 

real-time ECG 

monitoring via AI 

7, 10, 11, 20 Focused on remote and real-

time cardiac health monitoring 

systems 

  Datasets Used for Training and Validating AI Models 

The quality and type of datasets are critical for AI model diagnostic performance. 

Key Insights: 

• Publicly available datasets like MIT-BIH and PTB-XL remain essential for benchmarking 

and comparison of AI models. 

• A rising trend toward using real-world clinical ECG data reflects the desire to improve 

model generalizability across diverse populations. 

• Studies increasingly emphasize dataset diversity and representativeness to avoid bias 

and ensure robust clinical applicability. 
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• Some studies use simulated or unnamed data, which may affect transparency and 

reproducibility, raising concerns in peer-reviewed validation contexts. 

Table 3: Datasets Used in AI-ECG Research 

DATASET TYPE SPECIFIC EXAMPLES / 
DESCRIPTIONS 

STUDY 
NUMBERS 

NOTES / APPLICATIONS 

PUBLIC DATASETS - PTB-XL, Arrhythmia datasets 2, 6 Used for cardiac disorder and 
general heart disease 
classification  

- MIT-BIH Arrhythmia Database 4, 16 Popular open-source dataset; 
used in review contexts and 
model evaluation  

- PhysioNet Challenge Datasets 4, 16 Used to support algorithm 
testing and comparison  

- Three international databases 
in one simulation study 

6 Demonstrates the combination 
of diverse public ECG sources 

REAL-WORLD 
CLINICAL DATA 

- Baghdad Hospital ECGs (Iraq), 
Retrospective data from 
Bangladesh 

7, 16 Region-specific datasets 
reflecting local patient 
populations  

- Clinical studies in Saudi Arabia 
and Kuwait 

17, 19 Population-specific clinical 
ECG data used in 
observational research 

INTERNAL/SIMULATED 
DATA 

- Unnamed internal hospital 
datasets, synthetic/simulated 
ECG waveforms 

10, 13, 15 Used primarily for model 
testing in experimental setups 

REVIEW-BASED 
SOURCES 

- Studies synthesizing from 
public and clinical datasets 
(without using raw data) 

1, 3, 4, 5, 8, 
9, 11, 12, 
14, 16–20 

Provided general insights into 
dataset usage trends without 
applying AI models directly 

5.4 Risk of Bias Assessment 

The risk of bias was independently assessed for all 20 included studies using a structured 

framework based on the Cochrane Risk of Bias Tool and PROBAST. Five core domains were 

evaluated: participant selection, predictor measurement, outcome measurement, data analysis, and 

overall methodological quality. 

Table 4: Summary of Risk of Bias Across All Domains 

Domain Low Risk Unclear Risk High Risk 

Participant Selection 15 2 3 

Predictor Measurement 14 2 4 

Outcome Measurement 16 2 2 

Data Analysis 13 2 5 

Overall Risk of Bias 12 3 5 

Most studies demonstrated low risk across domains, particularly in outcome measurement 

and participant selection. However, several studies showed high risk in statistical analysis 

and predictor measurement due to inadequate feature selection and unclear model 



 

16 

 

validation procedures. 

 Diagnostic Outcomes and Predictive Performance (Objective 2) 

Due to the heterogeneity in reported metrics, study designs, and target conditions across the 

included studies, a quantitative meta-analysis of diagnostic outcomes was not feasible. 

Instead, a narrative synthesis of reported performance metrics from experimental and 

simulation studies is provided, complemented by qualitative observations from review 

articles. 

Table 5: Summary of Diagnostic Performance from Experimental and Simulation Studies 

No. Study ID 

(Author, 

Year) 

AI Model 

Used 

Targeted Clinical 

Application/Condition 

Key 

Performance 

Metrics 

Reported 

Numerical Value(s) 

2 Anand et al., 

2022 

ST-CNN-

GAP-5 

Cardiac disorders 

classification (PTB-XL + 

Arrhythmia) 

Accuracy, AUC Accuracy 92.7%, AUC 

93.41% 

6 Majhi et al., 

2024 

Random 

Forest, 

XGBoost 

(with 

SHAP) 

Heart disease detection Accuracy, F1 

score, 

Specificity, 

Precision 

Accuracy 97.2%, F1 

0.94, Specificity 

96.8%, Precision 

95.5% 

7 Chowdhury 

et al., 2018 

AI-assisted 

ECG system 

Mixed CVD/normal 

diagnosis in real-world 

setting 

Diagnostic 

accuracy, 

latency 

Accuracy 94.3%, 

Latency reduced 

~40% vs manual 

10 Kolhar et 

al., 2024 

Optimized 

i-AlexNet 

Real-time ECG signal 

classification for 

monitoring 

Accuracy, 

Precision, 

Recall, F1-

score, Latency 

Accuracy 98.8%, 

Precision 98.2%, 

Recall 97.7%, F1 

98.4%, Low latency 

13 Sonia J et 

al., 2022 

DBKPNN, 

DQMCNN 

(quantum-

enhanced) 

Cardiac disease detection Accuracy, 

Sensitivity, 

Precision 

Accuracy 95.6%, 

Sensitivity 94.8%, 

Precision 96.1% 

15 May et al., 

2024 

AI-

enhanced 

ECG 

platform 

Prospective evaluation 

framework (WCT 

analysis) 

Feasibility, 

predictive 

potential 

No diagnostic metrics 

reported (protocol 

study) 

Diagnostic Performance of AI Models in ECG Interpretation (Objective 4) 

This section synthesizes both quantitative results from experimental studies and 

qualitative insights from review articles, collectively demonstrating the diagnostic promise 

and practical utility of AI in ECG analysis. 

Narrative Summary of Quantitative Findings (Experimental & Simulation Studies) 
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Several experimental and simulation studies reported strong diagnostic outcomes for AI-driven 

ECG interpretation: 

Table 6: Studies reported strong diagnostic outcomes for AI-driven ECG interpretation 

Study Author 

(Year) 

Model Type / Method Diagnostic Outcome 

Anand et al., 2022 

[2] 

Deep CNN (ST-CNN-

GAP-5) 

High performance in cardiac disorder 

classification: Accuracy 92.7%, AUC 93.41% 

Majhi et al., 2024 

[6] 

Ensemble ML (Random 

Forest, XGBoost + SHAP) 

Strong diagnostic ability in heart disease 

detection: Accuracy 97.2%, F1 0.94, Specificity 

96.8%, Precision 95.5% 

Chowdhury et al., 

2018 [7] 

Portable AI-assisted ECG 

system 

Reliable real-world performance: Accuracy 

94.3%, ~40% faster diagnosis compared to 

manual interpretation 

Kolhar et al., 2024 

[10] 

Optimized CNN (i-

AlexNet + Red Fox) 

High real-time performance: Accuracy 98.8%, 

Precision 98.2%, Recall 97.7%, F1 98.4%, low 

latency 

Sonia J et al., 2022 

[13] 

Quantum-enhanced 

neural networks 

(DBKPNN, DQMCNN) 

Efficient cardiac disease detection: Accuracy 

95.6%, Sensitivity 94.8%, Precision 96.1% 

May et al., 2024 

[15] 

AI-enhanced ECG 

evaluation framework 

Demonstrated feasibility for predictive 

analytics; protocol-level study with no 

diagnostic metrics reported 

 

Overall Insight: Despite variations in metrics across studies, all demonstrated strong 

diagnostic performance, suggesting AI models are highly capable of detecting diverse 

cardiac conditions from ECG data. 

Qualitative Observations from Review Studies 

Review articles collectively highlighted key themes around the utility and potential of AI in 

ECG interpretation: 

 

 

Table 7: Articles highlighted key themes around the utility and potential of AI in ECG 

interpretation 
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Study Author (Year) Observations 

Siontis et al., 2021 [1] AI-based ECG models demonstrate potential for 

arrhythmia detection beyond traditional approaches. 

Attia et al., 2021 [2] AI-enhanced ECG interpretation outperformed standard 

analysis in predicting left ventricular dysfunction. 

Mamun et al., 2023 [3] Integration of AI into clinical ECG workflows shows 

promise for improving efficiency and reducing clinician 

workload. 

Rahma et al., 2023 [4] Emphasized importance of diverse datasets and 

augmentation strategies to improve generalizability of 

AI-ECG models. 

Anand et al., 2022 [5] Deep CNNs achieved strong classification performance, 

reinforcing potential for diagnostic automation. 

Majhi et al., 2024 [6] Ensemble learning with explainable AI tools (SHAP) 

increases interpretability alongside high performance. 

Chowdhury et al., 2018 

[7] 

Portable AI-assisted ECG devices provide reliable real-

world accuracy and practical utility in resource-limited 

settings. 

Kolhar et al., 2024 [10] Optimized CNN achieved near real-time performance, 

demonstrating feasibility for continuous cardiac 

monitoring. 

Sonia J et al., 2022 [13] Quantum-enhanced neural networks provide efficiency 

gains and novel methodological contributions to ECG 

classification. 

May et al., 2024 [15] Proposed prospective evaluation framework for AI-ECG 

predictive analytics, highlighting future clinical trial 

needs. 

Key Takeaways: 

• Quantitative studies consistently show high diagnostic accuracy, sensitivity, and 

specificity, especially for deep learning and ensemble models. 

• AI models have proven feasibility in both real-time and virtual ECG monitoring 

applications. 

• Review studies emphasize AI’s ability to reduce time-to-diagnosis and enhance early 

disease detection. 

• Model robustness and generalizability are improved by techniques like data 

augmentation, hybrid modeling, and real-world clinical integration. 

• Review-type studies are summarized in Table 8, while cross-sectional studies 

focusing on usability and adoption are presented separately in Table 8b (see note 

for clarification).” 
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Table 8 a : Qualitative Observations on Diagnostic Performance and Utility from Review 

Studies 

 
NO. 

STUDY ID 
(AUTHOR, YEAR) 

STUDY DESIGN KEY QUALITATIVE OBSERVATIONS ON 
DIAGNOSTIC PERFORMANCE/UTILITY 

1 Siontis et al., 
2021 

Narrative Review Discussed conceptual model performance and 
clinical relevance, focusing on AF, LV dysfunction, 
and early triage potential. 

2 Attia et al., 2021 Narrative Review Highlighted improved diagnostic performance, 
early detection, and predictive insights from AI-
ECG applications. 

3 Mamun et al., 
2023 

Narrative Review Described disease classification and arrhythmia 
detection, with emphasis on real-world diagnostic 
utility. 

4 Rahma et al., 
2023 

Systematic Review Reviewed data augmentation methods that 
improve diagnostic robustness, accuracy, and 
generalizability. 

5 Adasuriya et al., 
2023 

Systematic Review Reported improved diagnostic precision, early 
detection, and risk stratification with AI/ML-
enhanced ECG. 

6 Rafie et al., 2021 Narrative Review Emphasized reduced interpretation time and 
improved diagnostic support using AI-assisted 
ECG tools. 

7 Martinez et al., 
2024 

Narrative Review Focused on early disease detection and treatment 
guidance from AI-ECG in clinical workflows. 

8 Nechita et al., 
2024 

Narrative Review Synthesized advances in ECG signal interpretation 
for arrhythmia/disease monitoring, including 
COVID-19 context. 

9 Kashou et al., 
2023 

Methodological 
Review 

Compared ML vs. DL approaches, emphasizing 
diagnostic accuracy metrics and statistical 
performance analysis. 

10 Lichaee et al., 
2024 

Narrative Review Reported system validation outcomes for AI in 
arrhythmia detection and ECG signal analysis. 

11 Monfredi et al., 
2023 

Systematic Review Reviewed AI predictive analytics for early clinical 
deterioration and indirect diagnostic utility. 

12 Ose et al., 2024 Narrative Review Discussed clinical validation strategies, regulatory 
issues, and performance benchmarks from prior 
studies. 

13 Sellés et al., 2023 Narrative Review Synthesized clinical applications of AI-ECG and 
future diagnostic use. 

Overall: While direct statistical comparisons were limited, the evidence suggests that AI 

models hold significant promise for accurate and efficient ECG interpretation across 

various applications, with an increasing focus on real-time capabilities and predictive 

analytics. 

Clinical Applications of AI Models in ECG Analysis (Objective 4) 

The included studies revealed a wide range of clinical applications of AI-ECG tools. 

Overall Summary: AI in ECG analysis is no longer limited to diagnostics—it now extends 
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across the entire patient care continuum, offering: 

• Early detection of arrhythmias and heart diseases 

• Predictive analytics for risk management 

• Real-time, portable monitoring via IoMT integration 

• Clinical decision support tools for reducing interpretation burden 

• Even educational tools for raising awareness in healthcare and public settings 

These applications collectively position AI-ECG systems as a transformative force in 

modern cardiology, paving the way for smarter, faster, and more personalized 

cardiovascular care. 

Table 8b: Qualitative Observations on AI-ECG Utility from Cross-Sectional Studies 

No. Study ID 

(Author, 

Year) 

Study Design Key Qualitative Observations 

1 Al-Zaiti et al., 

2023 

Cross-sectional Study Explored clinician perceptions of 

explainable AI-ECG systems. 

Highlighted usability, trust, and 

integration barriers that indirectly 

affect diagnostic adoption. 

2 Sellés et al., 

2023 

Cross-sectional Study Investigated clinician experiences with 

AI-ECG in practice, noting both 

enthusiasm and caution regarding 

reliability, workflow fit, and 

responsibility for errors. 

Note: 

To maintain clarity and alignment with study designs, only review-type studies (narrative, systematic, 

methodological) are included in Table 8. The two cross-sectional studies (Al-Zaiti et al., 2023; Sellés et al., 

2023) are presented separately in Table 8b, since their focus is on perceptions, usability, and adoption rather 

than diagnostic performance. 

 

This structure ensures that: 

• Tables 5–6 summarize experimental and simulation studies (6 studies). 

• Tables 7–8 summarize review papers (13 studies). 

• Table 8b highlights cross-sectional studies (2 studies). 

Table 9: Clinical Applications of AI in ECG Analysis 



 

21 

 

Application Area Supporting Studies 
(Author, Year) 

Key Notes 

Early detection of arrhythmias 

(e.g., AF) 

Siontis et al., 2021 [1]; Mamun et 

al., 2023 [3]; Rahma et al., 2023 

[4]; Majhi et al., 2024 [6]; Nechita 

et al., 2024 [12]; Lichaee et al., 

2024 [16]; Ose et al., 2024 [18]; 

Sellés et al., 2023 [20] 

AI tools demonstrated accurate 

detection and prediction of AF and 

related arrhythmias. 

Diagnosis of structural heart 

disease (e.g., LV dysfunction, 

cardiomyopathy) 

Siontis et al., 2021 [1]; Attia et al., 

2021 [2]; Mamun et al., 2023 [3]; 

Chowdhury et al., 2018 [7]; Sonia J 

et al., 2022 [13] 

AI-assisted ECG useful in detecting 

LV dysfunction and structural 

abnormalities. 

Risk stratification & predictive 

analytics (e.g., cardiac events, 

deterioration) 

Siontis et al., 2021 [1]; Mamun et 

al., 2023 [3]; Adasuriya et al., 

2023 [8]; Monfredi et al., 2023 

[17] 

AI-ECG models showed promise in 

risk prediction and early warning 

for deterioration. 

Real-time monitoring / IoT & 

wearables 

Chowdhury et al., 2018 [7]; Kolhar 

et al., 2024 [10]; Sellés et al., 2023 

[20] 

Portable/IoT devices 

demonstrated feasibility for 

continuous ECG monitoring. 

Clinical decision support / 

workflow efficiency 

Adasuriya et al., 2023 [8]; Rafie et 

al., 2021 [9]; Martinez et al., 2024 

[11] 

AI-enabled ECG analysis 

supported faster decision-making 

and reduced workload. 

Educational tools / training & 

awareness 

Monfredi et al., 2023 [17]; Al-Zaiti 

et al., 2023 [19] 

Highlighted educational and 

training value of AI-ECG systems, 

including clinician trust and 

usability aspects. 

  

Despite the growing momentum of AI in ECG analysis, critical limitations remain across data, 

methodology, clinical implementation, and ethics. 

Call for Action: Overcoming the Roadblocks 

1. Diversify training datasets to reflect global populations and ensure model 

generalizability. 

2. Advance explainable AI techniques to increase transparency and build clinician 

trust. 

3. Invest in real-world validations and longitudinal trials to bridge the simulation-to-

clinic gap. 

4. Establish unified regulatory pathways and integration protocols with existing health 

systems. 

5. Ensure ethical deployment by promoting equity, privacy, and clear accountability 

frameworks. 
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Table 10: Gaps, Limitations, and Ethical Challenges Identified in Included Studies 

Category Supporting Studies 

(Author, Year) 

Key Notes 

Data & 

Generalizability 

Rahma et al., 2023 

[4]; Lichaee et al., 

2024 [16]; Ose et al., 

2024 [18] 

Heavy reliance on a few public datasets 

(e.g., MIT-BIH, PTB-XL) raises concerns 

about bias and limited generalizability. 

Model 

Transparency & 

Interpretability 

Anand et al., 2022 

[5]; Majhi et al., 

2024 [6]; Kashou et 

al., 2023 [14]; Al-

Zaiti et al., 2023 [19] 

Deep models often act as “black boxes.” 

Explainable AI tools (e.g., SHAP) can help 

but adoption remains limited. 

Clinical Validation 

& Integration 

May et al., 2024 

[15]; Ose et al., 2024 

[18] 

Most models not yet validated in 

prospective trials or real-world clinical 

workflows. 

Equity & 

Representation 

Lichaee et al., 2024 

[16]; Ose et al., 2024 

[18] 

Underrepresentation of diverse 

populations in training data may lead to 

inequities in diagnostic performance. 

Regulatory & 

Ethical Challenges 

Ose et al., 2024 [18]; 

Al-Zaiti et al., 2023 

[19] 

Concerns around patient data privacy, 

regulatory approval, trust, and 

accountability for AI-driven ECG 

decisions. 

 

Key Insights from Results   

The included studies demonstrated a wide range of AI model types applied to ECG analysis. 

Deep learning approaches dominated, particularly convolutional neural networks (CNNs), 

long short-term memory (LSTM) networks, and hybrid CNN–GRU or CNN–Transformer 

models. Machine learning techniques such as support vector machines, random forests, and 

XGBoost were also widely used, either independently or as part of ensemble frameworks, 

while hybrid models that integrated machine learning with deep learning appeared 

increasingly common. To enhance interpretability, several studies incorporated explainable 

AI tools such as SHAP and LIME, reflecting an emerging emphasis on transparency. 

Experimental studies consistently reported strong diagnostic outcomes. Anand et al. (2022) 

achieved high AUC values for arrhythmia classification using a deep CNN, while Majhi et al. 

(2024) reported excellent F1-scores and precision for heart disease detection with XGBoost 

combined with SHAP. Chowdhury et al. (2018) demonstrated that a portable AI-ECG system 
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achieved reliable accuracy in low-resource clinical environments. Across multiple studies, AI 

models were found to improve accuracy and sensitivity in detecting arrhythmias and 

myocardial infarctions, enhance predictive performance for identifying patients at risk of 

adverse cardiac events, and deliver faster and more consistent diagnoses under clinical 

pressure. 

Most experimental studies relied on public ECG datasets, particularly PTB-XL, MIT-BIH, and 

PhysioNet, while others employed real-world clinical data that offered greater diversity but 

also introduced noise and variability. Despite these advances, several studies noted 

persistent limitations in dataset diversity, raising concerns about the generalizability of 

models across populations. 

In terms of clinical applications, AI systems were tested for real-time arrhythmia detection 

through wearable devices, remote monitoring using AI-enabled ECG patches, and integration 

into electronic health records for risk prediction. Other implementations focused on 

diagnostic support tools in emergency settings, where AI reduced interpretation time and 

supported rapid decision-making. Collectively, these systems demonstrated the potential to 

transform clinical workflows, particularly in resource-constrained environments. 

Despite technological progress, important ethical and technical challenges remain. Many 

studies highlighted risks of algorithmic bias stemming from imbalanced datasets, the limited 

interpretability of deep models due to their “black box” nature, and concerns about patient 

privacy and consent in the use of clinical data. Furthermore, clinical validation outside 

controlled study environments was scarce, limiting confidence in generalizability. Efforts to 

address these issues included the incorporation of XAI frameworks, the use of real-world 

datasets to improve robustness, and calls for multidisciplinary governance to guide ethical 

adoption. 

Table 11: Ethical and Governance Considerations for AI-Driven ECG Interpretation 

Ethical / 

Governance Issue 

Supporting References Key Points 

Transparency & 

Explainability 

Marey et al., 2024 [29]; Asan 

et al., 2020 [30] 

Clinicians require interpretable outputs to 

trust AI-ECG tools; opaque “black box” 

systems hinder adoption. 

Trust & Clinical 

Adoption 

Asan et al., 2020 [30]; Reddy 

et al., 2019 [31] 

Successful integration depends on clinician 

confidence in AI recommendations and 

clarity about responsibility. 

Governance & 

Regulation 

Reddy et al., 2019 [31]; Naik 

et al., 2022 [32]; Iserson, 

2023 [33] 

Calls for structured frameworks to guide 

deployment, liability, and ethical use of AI in 

healthcare. 

Legal & Liability Naik et al., 2022 [32]; Iserson, 

2023 [33] 

Questions remain around malpractice 

responsibility if AI-driven ECG 

interpretation leads to harm. 

Fairness & Equity Zhang et al., 2023 [34]; Bias in training data can worsen health 
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Abujaber et al., 2024 [35] disparities; need fairness audits and 

inclusive datasets. 

Patient Safety & 

Outcomes 

Choudhury et al., 2020 [36] Patient outcomes, safety, and well-being 

should remain central in evaluating AI-

driven ECG tools. 

  

 Table 12 . Strengths and Limitations of AI-Driven ECG Analysis 

What Works What Needs Improvement 

High diagnostic accuracy Better dataset diversity and population representation 

Real-time and remote ECG 

monitoring 

Enhanced explainability and interpretability of 

models 

Workflow efficiency in clinical use Stronger regulatory frameworks and clinical 

validations 

XAI integration for trust-building Addressing bias, privacy, and implementation 

challenges 
  

The findings of this review highlight both the strengths and limitations of current AI 

applications in ECG analysis. On the positive side, AI models consistently demonstrated high 

diagnostic accuracy across multiple cardiac conditions, with strong potential for real-time 

and remote monitoring through wearable devices and embedded systems. They also 

improved workflow efficiency by reducing interpretation times and supporting clinicians 

under pressure. Importantly, the integration of explainable AI frameworks has begun to 

build trust by making model decisions more interpretable. 

At the same time, several areas require significant improvement before widespread adoption 

is feasible. Dataset diversity and population representation remain limited, raising concerns 

about equity and generalizability. Many models still function as “black boxes,” underscoring 

the need for more transparent and interpretable approaches. Stronger regulatory 

frameworks, rigorous clinical validations, and prospective real-world trials are necessary to 

move beyond experimental success. Finally, issues of algorithmic bias, data privacy, and 

implementation challenges must be addressed to ensure safe deployment in diverse 

healthcare contexts. 

In conclusion, AI-driven ECG analysis stands on the brink of transforming cardiology, but its 

promise can only be realized through sustained efforts to improve equity, transparency, and 

clinical reliability, ensuring safe and scalable adoption in practice. 
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Discussion 

 
This systematic review confirms that AI has tremendous potential to enhance ECG-based 

diagnosis, but it also brings to light significant challenges that must be addressed to translate 

these advances into routine clinical care. The findings consistently show that AI-enhanced 

ECG interpretation can surpass traditional methods in accuracy and speed, supporting AI’s 

role as a diagnostic amplifier in cardiology. However, the road to widespread adoption is 

impeded by issues of trust, transparency, and governance. Many of the included studies 

achieved high performance in controlled settings, yet very few were prospectively validated 

in real-world clinical workflows. This gap highlights a key concern: clinicians may be hesitant 

to trust and rely on an AI tool without clear evidence of its reliability in their patient 

populations. The “black-box” nature of most deep learning models further exacerbates this 

hesitation, as it is often unclear why the algorithm reaches a particular ECG 

interpretation[27][28]. Lack of interpretability and user trust are repeatedly cited barriers 

to clinical AI integration[28]. To foster acceptance, researchers are actively exploring 

solutions such as explainable AI interfaces and clinician-in-the-loop systems. In fact, 

strategies for improving transparency and accountability in medical AI are evolving in 

tandem with technological progress[29]. For example, recent work on algorithms for ECG 

analysis has integrated explanation modules (highlighting which ECG segments influenced 

the AI’s decision) and undergone usability testing with physicians to ensure the outputs 

make sense to human experts[30]. 

Another major theme is the need for robust ethical and regulatory frameworks to guide AI 

deployment in healthcare. At present, there is no consensus governance model for AI in 

clinical settings, which raises concerns about patient safety and accountability. Some 

scholars have proposed multi-stakeholder governance models that involve clinicians, data 

scientists, ethicists, and regulators in overseeing AI tools from development through post-

market surveillance[31]. Likewise, establishing clear standards for validating AI algorithms 

(analogous to drug trials) has been suggested to ensure safety and efficacy are rigorously 

demonstrated before clinical use. Our review underscores calls in the literature for formal 

guidelines on issues like algorithmic bias, fairness, and continuous monitoring of AI 

performance in practice[32][33]. Specific challenges such as legal liability in the event of AI 

errors remain unresolved – for instance, if an AI misses a fatal arrhythmia on an ECG, it is 

unclear whether responsibility falls on the software creator, the deploying institution, or the 

supervising clinician[34]. Efforts to clarify these questions are underway: recent publications 

have discussed potential regulatory frameworks and liability models (including treating AI 

similar to medical devices with mandated failure reporting)[31][34]. In parallel, the process 

of obtaining informed consent for AI involvement in patient care is emerging as a new 
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consideration. Patients may need to be informed when an AI algorithm is used in their 

diagnosis or treatment planning, especially if the AI’s role could meaningfully impact 

outcomes[35]. Developing patient consent language that clearly explains AI assistance 

without causing undue alarm is an area needing attention. 

Despite these challenges, the consensus in the community is that they are surmountable with 

multidisciplinary effort. Numerous initiatives are aiming to create trustworthy AI for 

healthcare by focusing on transparency, equity, and validation[36][37]. Researchers like 

Zhang et al. emphasize building ethics directly into AI design – for example, by using diverse 

training data to reduce bias and by conducting external audits of model performance to catch 

any disparities[36]. In the context of ECG, this means expanding datasets to include patients 

of different ages, sexes, ethnic backgrounds, and comorbid conditions, and ensuring the AI 

performs consistently across these groups. Technical fixes (such as bias correction 

algorithms) combined with institutional policies (like algorithmic fairness assessments 

before deployment) have been suggested as ways forward[32][38]. Additionally, 

professional societies and regulatory agencies are beginning to outline best practice 

guidelines for AI in cardiology. These include recommendations for continuous monitoring 

of AI outputs in practice, periodic re-training or recalibration of models as new data become 

available, and involving clinicians in the AI development process to align tools with clinical 

needs. 

Our review also highlights the importance of explainability and human-AI collaboration in 

successful implementation. Clinicians are more likely to adopt AI tools that can provide 

interpretable insights (for example, indicating which part of the ECG is abnormal or 

providing a confidence level for its prediction)[12]. There is optimism that integrating 

explainable AI (XAI) methods will not only improve user trust but also serve as a teaching 

aid – helping clinicians understand novel ECG patterns identified by AI and thus enhancing 

human expertise. Some included studies demonstrated this principle: for instance, the use of 

SHAP in one model allowed cardiologists to verify that the AI’s logic aligned with known ECG 

features of disease[19]. This kind of symbiosis between human and artificial intelligence can 

build confidence in the technology. Furthermore, from a workflow perspective, AI should 

ideally act as a supportive tool (e.g., a second reader for ECGs or a triage filter for normal vs 

abnormal), rather than a replacement for physician judgment. Such positioning can help 

mitigate medico-legal concerns as well – physicians would retain ultimate responsibility, 

using AI as an aid much like any diagnostic instrument. 

Finally, it is worth noting that if these challenges are effectively addressed, AI-ECG has the 

potential to significantly improve patient safety and outcomes. Early evidence indicates that 

AI can reduce diagnostic errors and oversight, particularly in high-volume settings where 

clinician fatigue is a factor[39][40]. By automating detection of subtle ECG changes, AI can 

alert providers to critical conditions they might otherwise miss, thereby preventing adverse 

events. Additionally, AI could enable more proactive care – for example, by identifying 

patients at risk of arrhythmias or deterioration before symptoms occur, allowing for earlier 
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interventions. Successful examples outside of cardiology, such as AI improving radiology 

workflows and reducing missed findings, suggest that similar gains are achievable in ECG 

interpretation with the right safeguards in place. In summary, while substantial work 

remains in terms of building the necessary trust, oversight, and evidence base for AI in 

electrocardiography, the trajectory is encouraging. Ongoing interdisciplinary collaboration 

between data scientists, clinicians, ethicists, and regulators will be key to developing AI tools 

that are not only powerful, but also safe, equitable, and aligned with clinical values. With 

these efforts, AI-augmented ECG interpretation could become a standard component of 

cardiovascular care, leading to faster diagnoses, more personalized treatments, and 

ultimately better outcomes for patients. 
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Conclusion 
 

Artificial intelligence is poised to become an integral part of electrocardiography, offering the 

ability to detect cardiac abnormalities with speed and precision that complement human 

expertise. This systematic review has illustrated that AI models – particularly deep learning 

algorithms – can significantly improve diagnostic accuracy for arrhythmias, ischemia, and other 

cardiac conditions, and they hold promise for expanding ECG analysis into continuous monitoring 

and preventive care. At the same time, our examination of the literature makes clear that realizing 

AI’s full potential in ECG interpretation will require careful navigation of the accompanying 

challenges. Key among these are ensuring the generalizability of AI tools through diverse and high-

quality data, enhancing transparency and explainability to secure clinician and patient trust, and 

instituting robust ethical and regulatory safeguards for AI deployment in clinical environments. 

Moving forward, interdisciplinary collaboration will be essential: data scientists, clinicians, 

ethicists, and policymakers must work in concert to refine AI algorithms and the frameworks that 

govern them. With sustained effort in these areas – validating AI-ECG systems prospectively, 

addressing biases, improving interpretability, and establishing clear standards for use – AI has the 

capacity to not only automate ECG interpretation but also to elevate it, leading to earlier diagnoses, 

more tailored treatments, and improved outcomes in cardiovascular care. In conclusion, AI in 

electrocardiography represents a transformative innovation on the horizon of medicine; by 

proactively tackling its current limitations, the medical community can ensure that this technology 

augments clinical practice in a safe, effective, and ethically responsible manner. 
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APPENDICES 

 

Data Extraction Table 

No. Study 

ID 

Study Title Study 

Design 

Country Country 

Income 

Category 

Study 

Period 

Population Samp

le 

Size 

Method/Measurement Tool JBI 

Score 

Full Text URL 

1. Siontis. 

et al, 

2021 

Artificial intelligence-

enhanced 

electrocardiography in 

cardiovascular disease 

management 

Narrative 

review 

USA High 2021 Cardiovascular 

disease in at-risk 

populations of 

all ages. 

N/A Analysis and synthesis of 

existing literature on AI 

applications in ECG 

interpretation 

6/6 https://www.nat

ure.com/articles

/s41569-020-

00503-2 DOI: 

10.1038/s41569

-020-00503-2 

2. Anand, 

et al, 

2022 

Explainable AI 

decision model for 

ECG data of cardiac 

disorders 

Experime

ntal study 

India Lower 

middle 

2022 ECG recordings 

from publicly 

available 

datasets, 

specifically PTB-

XL and an 

arrhythmia data 

set. 

Over 

21,00

0 

Development of a deep 

learning model named ST-

CNN-GAP-5, evaluated using 

metrics like accuracy and AUC. 

The model's interpretability 

was assessed using SHapley 

Additive exPlanations (SHAP) 

4/9 https://www.sci

encedirect.com/s

cience/article/ab

s/pii/S17468094

22001069 DOI: 

10.1016/j.bspc.2

022.103584 

3. Attia, 

et al, 

2021 

Application of artificial 

intelligence to the 

electrocardiogram 

Narrative 

Review 

USA/ UK High 2021 N/A N/A Comprehensive analysis and 

synthesis of existing literature 

on AI applications in 

electrocardiography for 

cardiovascular disease 

management 

6/6 https://academic

.oup.com/eurhea

rtj/article/42/46

/4717/6371908 

DOI: 

10.1093/eurhear

tj/ehab649 

4. Mamun 

et al, 

2023 

AI-Enabled 

Electrocardiogram 

Analysis for Disease 

Diagnosis 

Narrative 

Review 

USA High 2023 N/A N/A Comprehensive analysis and 

synthesis of existing literature 

on AI applications in 

electrocardiography for 

disease diagnosis 

5/6 https://www.md

pi.com/2571-

5577/6/5/95 

DOI: 

10.3390/asi6050

095 

5. Rahma, 

et al, 

2023 

A Systematic Survey of 

Data Augmentation of 

ECG Signals for AI 

Systemic 

Review 

Italy/ 

USA 

High 2023 N/A 119 Systematic literature search 

adhering to PRISMA 

guidelines, analyzing data 

7/11 https://www.md

pi.com/1424-

8220/23/11/52
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Applications augmentation techniques 

applied to ECG signals in AI 

applications 

37 DOI: 

10.3390/s23115

237 

6. Majhi 

et.al 

2024 

Explainable AI-driven 

machine learning for 

heart disease 

detection using ECG 

signal 

Simulatio

n Study 

N/A N/A 2024 ECG recordings 

from 3 

international 

databases 

101,7

99 

RF, XGBoost, SHAP, DWT/EWT 

signal processing 

N/A https://www.sci

encedirect.com/s

cience/article/ab

s/pii/S15684946

24009992 

https://doi.org/

10.1016/j.asoc.2

024.112225 

7. Chowd

huryy 

et.al 

2018 

AI Assisted Portable 

ECG for Fast and 

Patient Specific 

Diagnosis 

Experime

ntal study 

using 

retrospec

tive ECG 

Banglad

esh 

Middle-

lower 

2018 Mixed 

CVD/normal 

cases. 

80 Deep convolutional neural 

networks, wireless biosensing, 

ultraportable ECG, and MQTT 

communication protocol 

N/A https://ieeexplor

e.ieee.org/abstra

ct/document/84

65483 

https://doi.org/

10.1109/IC4ME2

.2018.8465483 

8. Adasur

iya 

Et.al , 

2023 

Next Generation ECG: 

The Impact of 

Artificial Intelligence 

and Machine Learning 

Narrative 

review 

N/A N/A 2023-

2019 

Patients with 

various 

cardiovascular 

diseases in 

multiple studies 

including 

randomized 

controlled trials 

N/A CNN-based DL models, ML 

algorithms 

N/A https://link.spri

nger.com/article

/10.1007/s1217

0-023-00723-4 

https://doi.org/

10.1007/s12170

-023-00723-4 

9. Rafie,et

.al 

2021 

ECG Interpretation: 

Clinical Relevance, 

Challenges, and 

Advances 

Narrative 

review 

USA HIGH 2021 Patients with 

cardiac 

symptoms 

N/A ECG, AI-ECG algorithms, 

mobile ECG devices 

N/A https://www.md

pi.com/2673-

3846/2/4/39 

https://doi.org/

10.3390/hearts2

040039 

10. Kolhar 

,et.al 

2024 

AI-Driven Real-Time 

Classification of ECG 

Signals for Cardiac 

Monitoring Using i-

AlexNet Architecture 

Experime

ntal study 

KSA/ 

INDIA 

High / 

middle-

lower 

2024 Mixed 

normal/abnorm

al ECG cases 

from public 

databases 

338 AlexNet, Red Fox Optimization, 

IoMT sensors (theoretical) 

N/A https://www.md

pi.com/2075-

4418/14/13/13

44 

https://doi.org/

10.3390/diagnos
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tics14131344 

11. Martin

ez Et.al 

2024 

Revolutionizing 

Cardiology: AI in ECG 

Analysis Paves the 

Way for Better Disease 

Detection and 

Treatment 

Narrative 

review 

N/A N/A 2024 Patient with 

various 

cardiovascular 

disease 

N/A -Deep learning algorithms -

Supervised learning 

techniques - AI-enhanced ECG 

-Integration of AI models into 

clinical decision 

N/A https://ai.nejm.o

rg/doi/full/10.1

056/AI-

S2400629 

12. Nechita 

Et.al 

2024 

AI-Enhanced ECG 

Applications in 

Cardiology: 

Comprehensive 

Insights from the 

Current Literature 

with a Focus on 

COVID-19 and 

Multiple 

Cardiovascular 

Conditions 

Narrative 

Review 

Romania Upper-

middle 

2024 N/A N/A AI-enhanced ECG, ECG DIVICE 

AI algorithms 

N/A https://www.md

pi.com/2075-

4418/14/17/18

39 

13. Sonia J 

Et.al 

2022 

AI Techniques for 

Efficient Healthcare 

Systems in ECG Wave 

Based Cardiac Disease 

Detection by High 

Performance 

Modelling 

Experime

ntal study 

India Lower-

middle 

2022 Patients with 

various cardiac 

conditions. 

N/A -Deep Belief Kernel Principal 

Neural Network -Deep 

Quantum Multilayer 

Convolutional Neural 

Networks -Performance 

Metrics 

N/A https://www.res

earchgate.net/pr

ofile/Vivek-

Solavande/publi

cation/3671625

11_AI_Technique

s_for_Efficient_H

ealthcare_System

s_in_ECG_Wave_

Based_Cardiac_Di

sease_Detection_

by_High_Perform

ance_Modelling/l

inks/6485d6607

9a722376526bdf

b/AI-

Techniques-for-

Efficient-

Healthcare-

Systems-in-ECG-
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Wave-Based-

Cardiac-Disease-

Detection-by-

High-

Performance-

Modelling.pdf 

14. Kashou 

Et.al 

2023 

Comparison of two 

artificial intelligence-

augmented ECG 

approaches: Machine 

learning and deep 

learning 

Methodol

ogical 

review 

India Lower-

middle 

2023 N/A N/A -Formulas for Different - 

Statistical Parameters -

Software Tools 

N/A https://www.sci

encedirect.com/s

cience/article/ab

s/pii/S00220736

23000481 

15. May 

Et.al 

2024 

A novel way to 

prospectively evaluate 

of AI-enhanced ECG 

algorithms 

Methodol

ogical 

N/A N/A N/A Patients with 

various cardiac 

conditions. 

N/A AI-enhanced ECG, ECG DIVICE 

Virtual testing platform 

N/A https://www.sci

encedirect.com/s

cience/article/ab

s/pii/S00220736

24002206 

16. Lichaee

.Et.al20

24 

Advancements in 

Artificial Intelligence 

for ECG Signal 

Analysis and 

Arrhythmia Detection: 

A Review 

Review 

Article 

Iran Uppermi

ddle 

N/A N/A N/A MIT-BIH Arrhythmia Database 

PhysioNet Challenge Datasets 

Clinical ECG data from 

hospitals (e.g., in Baghdad) 

N/A https://briefland

s.com/articles/ij

cp-143437 

17. Monfre

di Et.al 

2023 

Continuous ECG 

monitoring should be 

the heart of bedside 

AI-based predictive 

analytics monitoring 

for early detection of 

clinical deterioration 

Cross-

sectional 

study 

Saudi 

Arabia 

High May 

and 

June 

2023 

Nursing 

students 

175 Connor-Davidson Resilience 

Scale – 10 items (CD-RISC-10): 

World Health Organization-5 

Well-Being Index (WHO-5) 

N/A https://www.sci

encedirect.com/s

cience/article/ab

s/pii/S00220736

22002047 

18. Ose 

Et.al 

2024 

Artificial Intelligence 

Interpretation of the 

Electrocardiogram: A 

State-of-the-Art 

Review 

Narrative 

review 

USA High May 

16, 

2024 

N/A N/A Systematic searching and 

selection of relevant published 

articles on AI applied to 

electrocardiogram (ECG) 

interpretation. Critical analysis 

and synthesis of findings from 

these articles. Discussion of 

different AI approaches, 

N/A https://link.spri

nger.com/article

/10.1007/s1188

6-024-02062-1 
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Réviseur ; 

Université Paris Cité – Faculté de Médecine , 12 Rue de l’École de Médecine,75006 Paris, France 

 

clinical applications, validation 

techniques, and regulatory 

aspects. 

19. Al-Zaiti 

Et.al 

2023 

Explainable-by-design: 

Challenges, pitfalls, 

and opportunities for 

the clinical adoption of 

AI-enabled ECG 

A cross-

sectional 

study 

Kuwait High Februa

ry 9, 

2022, 

and 

April 

11, 

2022 

Young adults 

aged 18 to 35 

years residing in 

Kuwait. 

529 Questionnaire N/A https://www.sci

encedirect.com/s

cience/article/ab

s/pii/S00220736

23001905 

20. Sellés 

Et.al 

2023 

Current and Future 

Use of Artificial 

Intelligence in 

Electrocardiography 

Narrative 

review 

Spain High N/A N/A N/A Analyzes and summarizes 

existing research on AI 

applications in 

electrocardiography 

N/A https://www.md

pi.com/2308-

3425/10/4/175 
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